Hidden Space Smooth Support Vector Machine with C Means Clustering

نویسندگان

  • Jinjin Liang
  • Wenhao Xie
  • Xiaoyan Wang
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Smooth Support Vector Machine with FCM Clustering in Hidden Space

A multiple smooth model is proposed by smoothing technique and piecewise technique for large scale data. Mapping the training data to the hidden space with a hidden function, the proposed model divides the original data into several subclasses by Fuzzy C Means (FCM), whose initial cluster centers are selected by samples with large density indexes; derives the smooth differentiable model by util...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Transforming Pixel Signatures into an Improved Metric Space

Our previous work in computer-aided mammography has used scale orientation pixel signatures to provide a rich description of local structure. However, when treated as vectors for statistical classi cation, the Euclidean space they de ne has unsatisfactory metric properties. In this paper we describe a scheme that makes use of a previously described signature similarity measure to de ne a non-li...

متن کامل

Support Vector Clustering

We present a novel clustering method using the approach of support vector machines. Data points are mapped by means of a Gaussian kernel to a high dimensional feature space, where we search for the minimal enclosing sphere. This sphere, when mapped back to data space, can separate into several components, each enclosing a separate cluster of points. We present a simple algorithm for identifying...

متن کامل

Kernel-based fuzzy and possibilistic c-means clustering

The 'kernel method' has attracted great attention with the development of support vector machine (SVM) and has been studied in a general way. In this paper, this 'method' is extended to the well-known fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. It is realized by substitution of a kernel-induced distance metric for the original Euclidean distance, and the corresponding algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016